MANSONIA

Family: Scientific name(s): **Commercial restriction:** Note: Also called BETE.

MALVACEAE (angiosperm) Mansonia altissima no commercial restriction

WOOD DESCRIPTION

Color: brown Sapwood: clearly demarcated Texture: fine Grain: straight **Interlocked Grain:** absent

Note

Logs are almost floatable. Wood is yellowish brown to dark grey brown with purplish glints. Veins are more or less visible.

PHYSICAL PROPERTIES

LOG DESCRIPTION

Diameter: Thickness of Sapwood: Floats: Log Durability:

15.7 - 27.6 inches 0.88-2 inches no moderate (treatment recommended)

MECHANICAL/ACOUSTIC

Physical and mechanical properties are based on mature heartwood specimens. These properties can vary greatly depending on origin and growth conditions.

	Mean	<u>Std. Dev.</u>		<u>Mean</u>
Specific Gravity*:	0.66	0.03	Crushing Strength*:	3,702 lbf
Janka Hardness (lbs):	1,290		Static Bending Strength*: 1	15,954 lbf
Volumetric Shrinkage:	0.44%	0.06%	Modulus of Elasticity*:	1,975,414 lbf
Total Tangential Shrinkage (T	S): 7.4%	0.6%		
Total Radial Shrinkage (RS):	4.6%	0.4%	Musical Quality Factor: 137.	7 measured at 2772 Hz
TS/RS Ratio:	1.6			
Fiber Saturation Point:	28%		*At 12% moisture content.	
Stability: poorly stable				

NATURAL DURABILITY AND TREATABILITY

Fungi and termite resistance refers to end-uses under temperate climate. Except for special comments on sapwood, natural durability is based on mature heartwood. Sapwood must always be considered as non-durable against wood degrading agents. E.N. = Euro Norm

Funghi (According to E.N. standards):	class 1 – very durable
Dry Wood Borers:	class D - durable (sapwood demarcated, risk limited to sapwood)
Termites (According to E.N. standards):	class D - durable
Treatability (according to E.N. standards):	class 4 - not permeable
Use class ensured by natural durability:	class 3 – not in ground contact, outside
Species covering the use class 5:	no
Note:	
AND DETERMINED TO A DETERMINED	

Although BETE is mentioned in the natural durability class 1 towards fungi (very durable) in the standard NF EN 350-2, it is important to know that it is sensible to white rot "Coriolus versicolor" attacks, hence it's classification in class 2 (durable.)

According to the European standard NF EN 335, performance length might be modified by the intensity of end-use exposition.

REQUIREMENT OF A PRESERVATIVE TREATMENT

Against dry wood borer attacks:

does not require any preservative treatment In case of risk of temporary humidification: requires appropriate preservative treatment In case of risk of permanent humidification: use not recommended

MANSONIA

DRYING

Drying Rate:	noi
Risk of Distortion:	no
Risk of Casehardening:	no
Risk of Checking:	hig
Risk of Collapse:	no

Possible Drying Schedule: 2

normal no risk or very slight risk no nigh risk no

Temperature (°F) M.C. (%) **Drv-Bulb** Wet-Bulb **Air Humidity** (%) Green 122 116.6 84 75 40 122 113 30 131 116.6 67 20 158 47 131 15 167 136.4 44

This schedule is given for information only and is applicable to thickness lower or equal to 1.5 in. It must

This schedule is given for information only and is applicable to thickness lower or equal to 1.5 in. It must be used in compliance with the code of practice. For thickness from 1.5 to 3 in, the air relative humidity should be increased by 5% at each step. For thickness over 3 in, a 10% increase should be considered.

SAWING AND MACHINING

Blunting Effect:normalSawteeth Recommended:ordinary or alloy steelCutting Tools:ordinaryPeeling:goodSlicing:good

ASSEMBLING

Note: Sawdust may cause dermatitis or mucosa irritation. Nailing / screwing: good Gluing: correct

MAIN LOCAL NAMES

<u>Country</u>

Local Name

Cameroon Koul **Ivory Coast** Rete Ghana Mansonia, Aprono France Bete Congo Guissepa **Central African Republic** Koul Nigeria Ofun Uganda Munyama, Eri Kire

END-USES

Cabinetwork (high class furniture) Sliced veneer Interior paneling Flooring Exterior and Interior joinery Ship building (planking and deck) Veneer for back or face of plywood Light carpentry Shingles Moulding Turned goods Rolling shutters Glued laminate

Works Cited:

CIRAD'S Biomass, Wood, Energy, Bioproducts Research Unit (BioWooEB) Meier, E. (2015), Wood, United States of America